设为首页 加入收藏  |  English

当前位置: 网站首页 教职员工 专任教师 硕士生导师 正文


逯畅  

讲师


毕业院校:

东北师范大学 博士


研究领域:

脑发育障碍、计算心理学、大数据分析


办公地点:

心理学院401室


电子邮箱:

luc816@nenu.edu.cn


办公电话:

85099863

教育经历

20079-20116月,东北师范大学,信息科学与技术学院,学士

20119-20146月,东北师范大学,信息科学与技术学院,硕士

20149-20206月,东北师范大学,生命科学学院,博士

工作经历

20208-20238月,东北师范大学,心理学院,博士后

20239-至今,东北师范大学,心理学院,讲师


研究方向

脑发育及相关障碍的特征机制和应对策略

具体包括:

1.脑发育障碍的生理病理机制、早筛、识别、诊疗、干预

2.特殊儿童青少年发展促进

讲授课程

发展与教育心理学

心理学经典理论

留学生当代心理学前沿问题

留学生心理学导论

研究生研究方法

博士论文研习


科研项目

主持:

面向宏基因组学数据的自闭症诊断及分型方法研究,国家自然科学基金青年项目,30万,2024-

参与:

1.基于深度几何学习的药物靶点跨膜蛋白结合作用域结构指纹研究,国家自然科学基金面上项目,50万,2024-

2.MIA过程中MDSC影响子代大脑皮层发育的功能与机制研究,吉林省科技厅吉林省自然科学基金,10万,2022-

3.中国学龄儿童脑智发育队列研究—东北师范大学队列建设,国家科技计划项目科技创新2030300万,2021


学术成果

*为通讯作者,为共同一作

1.Sun P, Fan S, Li S, Zhang Y, Lu C*, Wang K*, Li X*. Automated exploitation of deep learning for cancer patient stratification across multiple types. Bioinformatics. 2023;39(11):btad654. doi:10.1093/bioinformatics/btad654

2.Lu C, Hu B, Li Q, Bi C, Ju XD*. Psychological Inoculation for Credibility Assessment, Sharing Intention, and Discernment of Misinformation: Systematic Review and Meta-Analysis. Journal of Medical Internet Research. 2023;25(1):e49255. doi:10.2196/49255

3.Hu B, Ju XD, Liu HH, Wu HQ, Bi C, Lu C*. Game-based inoculation versus graphic-based inoculation to combat misinformation: a randomized controlled trial. Cognitive Research: Principles and Implications. 2023;8(1):49. doi:10.1186/s41235-023-00505-x

4.Lu C, Rong J, Fu C, Wang W, Xu J, Ju XD*. Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention. Frontiers in Psychology. 2022;13. Accessed December 15, 2023. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.862719

5.Li Q, Ju XW, Xu J, Jiang J, Lu C*, Ju XD*. Maternal blood inflammatory marker levels increased in fetuses with ventriculomegaly. Frontiers in Human Neuroscience. 2022;16. Accessed December 15, 2023. https://www.frontiersin.org/articles/10.3389/fnhum.2022.998206

6.Lu C, Jiang W, Wang H, Jiang J, Ma Z*, Wang H*. Computational Identification and Analysis of Ubiquinone-Binding Proteins. Cells. 2020;9(2):520. doi:10.3390/cells9020520

7.Wang H, Jiang J, Chen Q, Zhang C, Lu C*, Ma Z*. SeqTMPPI: Sequence-Based Transmembrane Protein Interaction Prediction. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020:96-99.

8.Lu C, Gong Y, Liu Z, Guo Y, Ma Z*, Wang H*. TM-ZC: A Deep Learning-Based Predictor for the Z-Coordinate of Residues in α-Helical Transmembrane Proteins. IEEE Access. 2020;8:40129-40137. doi:10.1109/ACCESS.2020.2976797

9.Lu C, Liu Z, Kan B, Gong Y, Ma Z*, Wang H*. TMP-SSurface: A Deep Learning-Based Predictor for Surface Accessibility of Transmembrane Protein Residues. Crystals. 2019;9(12):640. doi:10.3390/cryst9120640

10.Lu C, Liu Z, Zhang E, He F, Ma Z*, Wang H*. MPLs-Pred: Predicting Membrane Protein-Ligand Binding Sites Using Hybrid Sequence-Based Features and Ligand-Specific Models. International Journal of Molecular Sciences. 2019;20(13):3120. doi:10.3390/ijms20133120

11.Liu, Z, Gong, Y, Guo, Y, Zhang, X, Lu, C*, Zhang, L.*, Wang, H.*, 2021. TMP- SSurface2: A Novel Deep Learning-Based Surface Accessibility Predictor for Transmembrane Protein Sequence. Frontiers in Genetics 12.

12.Sun, P, Guo, S, Sun, J, Tan, L, Lu, C, Ma, Z*, 2018. Advances in In-silico B-cell Epitope Prediction. Current Topics in Medicinal Chemistry 19, 105–115.


上一篇:文竹
下一篇:毕有余